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We present an efficient algorithm that, combined with a max-flow, min-cut min-
imization algorithm, makes it possible to find the ground states of the Gaussian
Random Field Ising model when the external applied fieldB is continuously varied
from−∞ to+∞. The algorithm exactly finds all the possible ground states and their
limiting range(Bmin, Bmax). Examples of the dependence of the magnetization and
energy withB are shown for the 2d-RFIM. c© 2000 Academic Press
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1. INTRODUCTION

One of the recent trends in Statistical Mechanics has been the study of different model
systems with quenched disorder. The goal of such studies is to become closer to the real
physical phenomena. The complexity of such models is due not only to the disorder itself,
but also to the competition with thermal fluctuations. Thus, a first step is to neglect such
thermal fluctuations and focus on the study of the ground state (T = 0) properties of such
models. In particular it is especially interesting to study the possiblity forT = 0 phase
transitions which appear when the system is driven by an external field, or when certain
parameters characterizing the quenched disorder are varied.

Among others, the Random Field Ising model (RFIM) is remarkably simple but, as
occurred with the corresponding disorder-free model (Ising model) it includes the key
ingredients for the study of phase transitions. Still many details of its phase diagram are not
understood. The model is defined on a finite regular lattice withN sites. On each lattice site
one defines a spin variable taking valuesSi =±1. The hamiltonian reads

H = −J
∑
i, j

Si Sj −
∑

i

hi Si − B
∑

i

Si , (1)
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where the first sum (the standard Ising model) extends over nearest neighbor pairs,J> 0 is a
ferromagnetic exchange coupling (we will takeJ= 1 as a unit of energy),B is the externally
applied field, andhi are quenched random fields, independent and distributed with a certain
probability densityp(h). We shall concentrate, as an example, on the 2d square lattice with
only nearest neighbor interactions, but the algorithm presented can be extended to regular
lattices with other symmetries and exchange interactions of longer range, provided that no
frustration appears. Without loss of generality we will assume that the random fields have
zero mean (one can redefine the external fieldB to ensure this condition) and standard
deviationσ : ∫ ∞

−∞
hp(h) dh = 0,

∫ ∞
−∞

h2 p(h) dh = σ 2. (2)

For the present work it is of crucial importance that the distribution of random fieldsp(h)
is continuous. Then, one can ensure that two different configurations{Si }1 and{Si }2 have
different energyH, except for a set of values of the model parameters with zero measure.
As an example we will focus on the case of gaussian random fields; i.e.,

p(h) = 1√
2πσ

e−
h2

2σ2 . (3)

In this case an exact theorem has proven that in the thermodynamic limit, for a fixed set
of random fieldshi and B, the ground state is unique [1]. Note that this does not prevent
the possibility of finding a phase transition when considering the full ensemble of copies of
the system with different realizations of the random fields{hi } corresponding to a certain
value ofσ . The natural definition of an order parameter is:

m= 〈M〉
N
=
〈∑N

i=1Si
〉

N
, (4)

where the symbol〈. . .〉 stands for the average over different realizations of the disorder
corresponding to a certain value ofσ . A first-order phase transition in theσ − B phase
diagram will be associated to a discontinuity ofm.

Previous studies of theT = 0 properties of this model can be classified into two main
groups:

• Equilibrium studies: they are rather scarce since the algorithms for searching the exact
ground states require a computational effort that has been affordable only quite recently.
Existing works have concentrated in theB= 0 case for bothd= 2 [2, 3] andd= 3 [4, 5].
System sizes of 1000× 1000 [2] and 80× 80× 80 [5] have been studied. The complexity of
the problem naively looks as if growing exponentially with system size as 2N . Nevertheless
it can be simplified into a polynomial growing (N2) task by exploiting the mapping with
the problem of computing the maximum flow through a network [6]. We are not going to
discuss how such minimization algorithms work but rather assume that such a subroutine
is available [7].
• Metastability studies: these are much more numerous and focus on theT = 0 hysteresis

properties of the Random Field Ising models [8]. In this case, instead of looking for the
exact ground states, the system is driven by sweeping the external fieldB from−∞ to∞
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and backward, and the spins are flipped by using synchronous local relaxation dynamics
based on a zero-temperature Glauber single-spin flip scheme. This makes the problem easy
to simulate, and systems of size 30,000× 30,000 can be reached [9]. The results suggest,
indeed, the existence of a first-order phase transition line ending at a critical point atσc,
with universal properties [10]. Nevertheless, the 2d case is still under discussion.

The goal of the present paper is to present an efficient algorithm that, for a fixed set of
{hi }, makes it possible to find the sequence of ground states when scanningB from−∞ to
∞, and study theT = 0 equilibrium behavior of the magnetization and other magnitudes.
It should be mentioned that a recent paper [11] has also investigated the possibility for such
scanning parameter algorithms in similar models, but the solutions proposed require that
both the random fields and the hamiltonian parameters are integers.

2. ALGORITHM DETAILS

2.1. Previous Considerations

The idea behind the algorithm is to plot the energy of each state{Si } on aH vs B diagram.
For each state, the energy behaves as a straight line with slope−M ,

H({Si }, B) = H0({Si })− BM, (5)

whereH0({Si })=−
∑
〈i, j 〉Si Sj −

∑
i hi Si is the energy axis intercept. Some of these lines

are represented in Figs. 1 and 2. The different ground state corresponding to each value of
B will be found by looking to the lines determining the lower bound in such a plot.

Let us consider a system of sizeN= Ld. Let hmin andhmaxbe the maximum and minimum
values of thehi fields for a certain realization of the disorder. Under such circumstances,
since the system is finite, the ground state is unique, except for a set of values ofB with
zero measure. Note the following simple propositions:

FIG. 1. First step in the search procedure in theH–B diagram.
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FIG. 2. Second step in the search procedure in theH–B diagram.

PROPOSITION2.1. For B<−hmax(B>−hmin) the ground state is{Si =−1} ({Si = 1}).
Proof. The proof is straightforward, since under such circumstances{Si =−1} ({Si = 1})

minimizes not only the first term of the hamiltonian (1), but also the sum of the last two
terms, —

∑
i (hi + B)Si .

PROPOSITION2.2. Let C1={Si }1 be the ground state for B= B1 and C2={Si }2 (C2 6=
C1) be the ground state for B= B2> B1. Let, also, M1 and M2 be the corresponding
magnetizations. Then M2>M1.

Proof. Since the configurationsC1 andC2 are the ground states atB1 andB2, respec-
tively, we can write

H0(C2)− B2M2 < H0(C1)− B2M1
(6)

H0(C1)− B1M1 < H0(C2)− B1M2.

By adding both equations one inmediately arrives at

(B2− B1)M1 < (B2− B1)M2 (7)

and sinceB2> B1, thenM2>M1.
Thus the sequence of ground states when sweeping the external field fromB=−∞

to B=∞ will exhibit strict increasing magnetization fromM =−N to M = N. This
gives a maximum number of possible ground statesN, sinceM grows from−N to N
in steps of 2 units. For low values of the disorder the number of ground states will be much
lower.

COROLLARY 2.1. In theH–B diagram the slopes of the lines corresponding to the states
C1 and C2 are different(so the lines intersect) and its intersection occurs at a field Bc such
that B1< Bc< B2.

We will refer to this field ascrossing field betweenC1 and C2 and represent it as
B(C1,C2).
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PROPOSITION2.3. Let C1={Si }1 be the ground state for B= B1, C2={Si }2 the ground
state for B= B2> B1 and Bc=B(C1,C2). If there is no configuration C such that
H(C, Bc)<H(C1, Bc)=H(C2, Bc) then: (i) C1 is the ground state at least for the field
range B1< B< Bc, and(ii ) C2 is the ground state at least for the field range Bc< B≤ B2.

Proof. (i) Let us suppose that there is a configurationC̃ such that forB= B̃ with
B1< B̃< Bc the relationH(C̃, B̃)<H(C1, B̃) holds. Due to proposition 2.2̃M >M1.
Thus, the energy of such a configuration atBc would be

H(C̃, Bc) = H(C̃, B̃)− (Bc− B)M̃

< H(C1, B̃)− (Bc− B)M̃

< H(C1, B̃)− (Bc− B)M1 ⇒
H(C̃, Bc) < H(B1, Bc), (8)

in contradiction with the hypothesis of the proposition. The proof of (ii ) is very similar.
The power of proposition 2.3 comes from the fact that it can be applied iteratively.

Let us supose that we cannot apply proposition 2.3 atBc. Then the ground state (C)
at this point will satisfyH(C, Bc)<H(C1, Bc)=H(C2, Bc). By corollary 2.1 it will be
B1<B(C1,C)< Bc andBc<B(C,C2)< B2. We can try to apply proposition 2.3 for both
B(C1,C) andB(C,C2). For each one of these fields that do not meet the hypothesis of
proposition 2.3, we will find another ground state and two new fields to test the hypothesis.
It must be noticed that each ground state found during the iteration procedure is the ground
state for a certain range of fields betweenB1 andB2.

2.2. Algorithm Formulation

The algorithm constructs a listW of all the ground states, together with the valuesBmin

and Bmax that indicate the range of validity of each ground state. So, each element of the
list W is formed by a state{Si } and two fields:

Wj = (Cj , bj , Bj ). (9)

At the end of the algorithm eachCj ={Si } j is the ground state for any external field
bj < B< Bj .

The starting point are the statesC0={Si =−1} (which is the ground state, at least, for
any applied fieldB<−hmax) andC1={Si =+1} (which is the ground state, at least, for
any applied fieldB>−hmin). The algorithm then proceeds by analyzing its crossing point
B(C0,C1).

The algorithm stores the successive crossing fields (Bi ) to be checked in a queueq
together with the indexes (ki andl i ) of the states whose corresponding lines cross at that
field [qi = (Bi , ki , l i ), so thatBi =B(Cki ,Cli )]. When one of those fields is checked it is
erased. The algorithm finishes whenq is empty. It is also possible to avoid a number of
superfluous minimizations by arresting the procedure if, when analyzing the crossing field
B(Ci ,Cj ), the magnetizationsMi andM j are found to differ only by two units.

The next functions are supposed to exist:

• minimize: Given a configuration of random fields{hi } and an external fieldB,
minimize({hi }, B) returns the configuration that minimizes the energy.
• pop: This acts over a queue. It returns the zero-th element of the queue and erases it.
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TABLE I

Initial State of the List W

Configuration b B

C0 −∞ b0

C1 b0 ∞

• add: Given a list or a queue and one or more elements this function adds the elements
to the list or queue.
• num: Given a list it returns the number of elements on it.

ALGORITHM 1 (GROUND STATES({hi })).

1. begin
2. W=∅
3. q=∅
4. C0 := {Si = −1}
5. C1 := {Si = +1}
6. b0 :=B(C0,C1)

7. add{W; (C0,−∞, b0), (C1, b0,∞)}
8. add{q; (b0, 0, 1)}
9. while q 6=φ do

10. (b, k, l ) := pop(q)
11. (Ck, bk, Bk) := Wk

12. (Cl , bl , Bl ) := Wl

13. C := minimize({hi }, b)
14. if H(C, b)<H(Ck, b)(=H(Cl , b)) then
15. B :=B(Ck,C)
16. b :=B(C,Cl )

17. Wk := (Ck, bk, B)
18. Wl := (Cl , b, Bl )
19. add{q; (B, k,num(W)), {b, num(W), j )}
20. add{W; (C, B, b)}
21. end if
22. end while
23. end.

where∅ means either an empty list or queue.
Tables I, II, and III show the state of listW, at the beginning, after the first minimization

(see Fig. 1), and after the second minimization (see Fig. 2), respectively.

TABLE II

State of the ListW after the First

Minimization Step

Configuration b B

C0 −∞ b2

C1 B2 ∞
C2 b2 B2
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TABLE III

State of the ListW after the Second

Minimization Step

Configuration b B

C0 −∞ b3

C1 B2 ∞
C2 B3 B2

C3 b3 B3

3. SOME RESULTS

Figure 3 shows an example of the minimization results for a system of sizeL = 32,
periodic boundary conditions, andσ = 1.5. For comparison we also show the evolution of
the system under the nonequilibrium dynamics described before, which has been used for
the study of avalanche phenomena in this type of extended disordered systems [8].

We present the behavior of the different physical quantities of interest [12]: the internal
energyH0 (a), the input energy−BM (b), the total energyH=H0− BM (c), and the
magnetizationM (d). A detailed comparison between the metastable and stable evolution
will be presented elsewhere. Nevertheless, several interesting results can already be pointed
out:

FIG. 3. Ground state evolution (continuous line) as a function ofB for a system withL = 32 andσ = 1.5.
The different figures show the evolution of (a)H0, (b)−BM, (c)H=H0− BM, and (d)M . Dashed lines show,
for comparison, the metastable forward and backward metastable trajectory.
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• The equilibrium trajectory is formed by the sequence of configurations which are
absolute minimizers of the energy at each given field. Therefore, as expected from thermo-
dynamic arguments, the equilibrium trajectory followed by the magnetization is the same
independent of whether the field increases or decreases.
• The equilibrium trajectory exhibits avalanches of the magnetization very similar to the

ones found in the metastable evolution. Contrary to the metastable evolution, however, there
is no energy dissipation associated with equilibrium avalanches: the change ofH0 is exactly
compensated by the change in−BM there. The equilibrium trajectory is anhysteretic.
• The dynamics of the equilibrium evolution corresponds to minimizing the energy when

clusters of spins of any size, from a single spin to the whole system size, are allowed to flip
simultaneously. On the other extreme, the metastable evolution provided by the synchronous
relaxation dynamics corresponds to minimizing the energy when clusters of only one spin
are allowed to flip at a time.
• The internal energyH0 exhibits a monotonously decreasing behavior forB< 0 and a

monotonously increasing behavior forB> 0, going through a minimum atB= 0 (this is
not the case for the metastable evolution, for whichH0 displays oscillations). This result,
that can be obtained directly from Eq. (5) and proposition 2.2 can also be understood in
terms of standard equilibrium thermodynamics: the fundamental equation for such a simple
magnetic system is dH0= T dS+ B dM ; therefore,(

∂H0

∂B

)
T

= T

(
∂S

∂B

)
T

+ B

(
∂M

∂B

)
T

. (10)

At T = 0 one gets: (
∂H0

∂B

)
T=0

= B

(
∂M

∂B

)
T=0

. (11)

Note that the derivative in the second term is always positive due to stability conditions,
and thus the variation of the internal energyH0 with B must have the sign ofB.
• The efficient computation of theM–B equilibrium line opens new possibilities for

the study of criticality in Random Field Ising models. In particular, it may allow the di-
rect determination of the critical exponentδ which characterizes the dependence of the
magnetization on the external field atσ = σc: B∼ |M |δ sgnM .

Finally, we point out a possible improvement of the present algorithm, on the basis of the
following conjecture: when the field is swept from−∞ to∞ no reverse spin flips occur in
the equilibrium trajectory. This allows an easy simplification, since the spinsSi =+1 for a
certain value ofB can be removed from the ground state analysis for all higher values of
the external field.
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